organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Chloro-N-{3-cvano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazol-5yl}acetamide

Jian-giang Zhang, Qiu He, Qiang-hua Jiang, Hai-pin Mu and Rong Wan*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: rwan@njut.edu.cn

Received 27 October 2011; accepted 7 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.053; wR factor = 0.155; data-to-parameter ratio = 11.9.

The title compound, C₁₃H₆Cl₃F₃N₄O, was synthesized by the reaction of 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carbonitrile and 2-chloroacetyl chloride. The five-membered pyrazole ring makes a dihedral angle of 71.5 (3)° with the benzene ring. The $-CF_3$ group is disordered by rotation, and the F atoms are split over two sets of sites with occupancies of 0.59 (2) and 0.41 (2). The crystal structure features weak C-H···O and N-H···N interactions involving the carbonyl and cyano groups as acceptors.

Related literature

For biological properties of N-pyrazole derivatives, see: Cheng et al. (2008); Liu et al. (2010); Hatton et al. (1993). For related structures, see: Yang et al. (2004); Zhang et al. (2005); Zhong et al. (2004).

Experimental

Crystal data

$C_{13}H_6Cl_3F_3N_4O$	$\gamma = 66.10 \ (3)^{\circ}$
$M_r = 397.57$	V = 794.9 (3) Å ³
Triclinic, P1	Z = 2
a = 8.4190 (17) Å	Mo $K\alpha$ radiation
b = 9.2650 (19) Å	$\mu = 0.62 \text{ mm}^{-1}$
c = 11.944 (2) Å	T = 293 K
$\alpha = 69.77 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.2$
$\beta = 76.74 \ (3)^{\circ}$	

0.20 mm

2921 independent reflections 2313 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

intensity decay: 1%

 $R_{\rm int} = 0.030$

reflections

Data collection

Enrat–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.837, T_{\max} = 0.887$
3133 measured reflections

Refinement

R

w S

29

$[F^2 > 2\sigma(F^2)] = 0.053$	246 parameters
$R(F^2) = 0.155$	H-atom parameters constrained
= 1.01	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
21 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4 - H4A \cdots N3^{i}$ $C4 - H4B \cdots O^{ii}$	0.86 0.93	2.49 2.53	3.280 (5) 3.349 (5)	153 148

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Professor Hua-gin Wang of the Analysis Centre, Nanjing University, for providing help during the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2393).

References

- Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622-627.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.
- Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, Z., Zhong, P. & Guo, S. (2004). Acta Cryst. E60, o1277-o1278.
- Zhang, X.-H., Chen, J.-Z., Zhong, P., Xiao, H.-P. & Hu, M.-L. (2005). Acta Cryst. E61, 03676-03678.

Zhong, P., Yang, Z., Li, S. & Tang, R. (2004). Acta Cryst. E60, o2395-o2396.

supplementary materials

Acta Cryst. (2012). E68, o104 [doi:10.1107/S1600536811052743]

2-Chloro-N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazol-5-yl}acetamide

J. Zhang, Q. He, Q. Jiang, H. Mu and R. Wan

Comment

In a variety of biological heterocyclic compounds, *N*-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng *et al.*, 2008). Some X-ray structures of *N*-pyrazole compounds have already been reported (Zhang *et al.*, 2005; Zhong *et al.*, 2004; Yang *et al.*, 2004), and they have been found to exhibit good insecticidal activities against diamond-back moth, mustard beetle, vetch aphid and so on (Hatton *et al.*, 1993). Besides, some other *N*-pyrazole derivatives are known to have antifungal activities (Liu *et al.*, 2010). Herein we report the crystal structure of a new derivative (Fig. 1). In this structure, the pyrazole ring N1/N2/C8/C9/C10 is a planar five-membered ring and the mean deviation from plane is 0.0063 Å. The dihedral angle between the pyrazole and benzene rings is 71.5 (3)°. In the crystal structure, weak intermolecular C—H…O and N—H…N hydrogen bonds (Table 1) link symmetry-related molecules, to form a trimeric unit (Fig. 2), which may be effective in the stabilization of the crystal.

Experimental

To a stirred solution of 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1*H*-pyrazole-3-carbonitrile (5 mmol) in THF (20 ml) was added 2-chloroacetyl chloride (5 mmol) dropwise at 0-5 °C. After the addition, the reaction mixture was allowed to rise to room temperature and was stirred for 2 h. The crude product precipitated and was filtered. Pure compound was obtained by crystallization from ethanol. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the carrier atom. F atoms were disordered over two sites, occupancies were refined and converged to 0.565 (12) and 0.435 (12), respectively.

Figures

Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H…N and C—H…O hydrogen bonds.

2-Chloro-N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]- 1H-pyrazol-5-yl}acetamide

Crystal data	
C ₁₃ H ₆ Cl ₃ F ₃ N ₄ O	Z = 2
$M_r = 397.57$	F(000) = 396
Triclinic, <i>P</i> T	$D_{\rm x} = 1.661 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 483 K
a = 8.4190 (17) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 9.2650 (19) Å	Cell parameters from 25 reflections
c = 11.944 (2) Å	$\theta = 9-13^{\circ}$
$\alpha = 69.77 \ (3)^{\circ}$	$\mu = 0.62 \text{ mm}^{-1}$
$\beta = 76.74 \ (3)^{\circ}$	T = 293 K
$\gamma = 66.10 (3)^{\circ}$	Block, colourless
V = 794.9 (3) Å ³	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

2313 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
$h = 0 \rightarrow 10$
$k = -10 \rightarrow 11$
$l = -14 \rightarrow 14$
3 standard reflections every 200 reflections
intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2} + 0.320P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
2921 reflections	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
246 parameters	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.195 (13)

methods

sup-2

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
0	0.3070 (3)	0.0918 (3)	0.0994 (3)	0.0713 (8)	
Cl1	0.20070 (11)	0.26994 (9)	0.46773 (7)	0.0529 (3)	
Cl2	0.04187 (13)	0.81751 (11)	0.09593 (7)	0.0636 (3)	
C13	0.66610 (14)	0.09291 (16)	0.24189 (12)	0.0861 (4)	
N1	0.0425 (3)	0.4846 (3)	0.2382 (2)	0.0414 (6)	
C1	0.1882 (4)	0.4703 (3)	0.3992 (3)	0.0380 (6)	
N2	-0.1343 (3)	0.5475 (3)	0.2373 (2)	0.0462 (6)	
C2	0.2458 (4)	0.5460 (4)	0.4546 (3)	0.0444 (7)	
H2B	0.2910	0.4894	0.5282	0.053*	
C3	0.2352 (4)	0.7066 (4)	0.3993 (3)	0.0480 (7)	
N3	-0.4748 (4)	0.5210 (5)	0.1439 (4)	0.0816 (11)	
N4	0.3004 (3)	0.2913 (4)	0.1692 (3)	0.0510 (7)	
H4A	0.3625	0.3317	0.1884	0.061*	
C4	0.1707 (4)	0.7917 (4)	0.2891 (3)	0.0482 (7)	
H4B	0.1657	0.8996	0.2520	0.058*	
C5	0.1144 (4)	0.7150 (4)	0.2353 (3)	0.0431 (7)	
C6	0.1175 (3)	0.5552 (3)	0.2906 (2)	0.0371 (6)	
C7	0.2921 (6)	0.7937 (5)	0.4592 (5)	0.0759 (12)	
C8	-0.1616 (4)	0.4631 (4)	0.1792 (3)	0.0468 (7)	
C9	-0.0098 (4)	0.3489 (4)	0.1413 (3)	0.0504 (8)	
H9A	0.0011	0.2764	0.0998	0.060*	
C10	0.1202 (4)	0.3680 (4)	0.1793 (3)	0.0419 (7)	
C11	-0.3373 (5)	0.4970 (5)	0.1602 (3)	0.0597 (9)	
C12	0.3826 (4)	0.1554 (4)	0.1304 (3)	0.0511 (8)	
C13	0.5789 (5)	0.0841 (6)	0.1261 (4)	0.0791 (13)	
H13A	0.6268	0.1419	0.0503	0.095*	
H13B	0.6178	-0.0302	0.1271	0.095*	
F1	0.193 (2)	0.9401 (14)	0.447 (3)	0.155 (10)	0.59 (2)
F2	0.4449 (12)	0.8100 (17)	0.3936 (8)	0.104 (3)	0.59 (2)
F3	0.3470 (18)	0.7085 (13)	0.5612 (6)	0.111 (4)	0.59 (2)
F1'	0.1496 (12)	0.851 (3)	0.5471 (17)	0.111 (6)	0.41 (2)
F2'	0.327 (6)	0.913 (4)	0.4027 (11)	0.169 (13)	0.41 (2)
F3'	0.3932 (17)	0.6929 (17)	0.5431 (17)	0.135 (8)	0.41 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
0	0.0581 (15)	0.0791 (18)	0.097 (2)	-0.0240 (13)	-0.0006 (14)	-0.0539 (16)
Cl1	0.0595 (5)	0.0366 (4)	0.0579 (5)	-0.0150 (3)	-0.0143 (4)	-0.0052 (3)
Cl2	0.0760 (6)	0.0575 (5)	0.0474 (5)	-0.0184 (4)	-0.0215 (4)	0.0000 (4)
Cl3	0.0623 (6)	0.0942 (8)	0.1011 (8)	-0.0006 (5)	-0.0307 (6)	-0.0455 (7)
N1	0.0354 (13)	0.0464 (14)	0.0460 (13)	-0.0133 (11)	-0.0082 (10)	-0.0167 (11)
C1	0.0340 (14)	0.0352 (14)	0.0432 (15)	-0.0093 (11)	-0.0075 (11)	-0.0105 (12)
N2	0.0336 (13)	0.0546 (15)	0.0508 (15)	-0.0133 (11)	-0.0082 (11)	-0.0159 (12)

supplementary materials

C2	0.0419 (16)	0.0485 (17)	0.0454 (16)	-0.0113 (13)	-0.0148 (13)	-0.0157 (13)
C3	0.0396 (16)	0.0499 (18)	0.0607 (19)	-0.0134 (14)	-0.0091 (14)	-0.0236 (15)
N3	0.0492 (19)	0.114 (3)	0.097 (3)	-0.0287 (19)	-0.0217 (17)	-0.040(2)
N4	0.0399 (14)	0.0645 (17)	0.0633 (17)	-0.0206 (12)	-0.0029 (12)	-0.0346 (14)
C4	0.0478 (18)	0.0361 (15)	0.0593 (19)	-0.0151 (13)	-0.0093 (14)	-0.0093 (13)
C5	0.0390 (15)	0.0418 (16)	0.0433 (15)	-0.0090 (12)	-0.0095 (12)	-0.0089 (12)
C6	0.0320 (14)	0.0402 (15)	0.0407 (15)	-0.0103 (11)	-0.0059 (11)	-0.0150 (12)
C7	0.075 (3)	0.058 (2)	0.112 (4)	-0.018 (2)	-0.040 (3)	-0.031 (2)
C8	0.0410 (17)	0.0599 (19)	0.0465 (16)	-0.0212 (14)	-0.0118 (13)	-0.0149 (14)
C9	0.0486 (18)	0.063 (2)	0.0535 (18)	-0.0246 (15)	-0.0079 (14)	-0.0256 (15)
C10	0.0407 (16)	0.0487 (16)	0.0420 (15)	-0.0174 (13)	-0.0047 (12)	-0.0174 (13)
C11	0.053 (2)	0.077 (2)	0.058 (2)	-0.0258 (18)	-0.0128 (16)	-0.0231 (18)
C12	0.0449 (18)	0.063 (2)	0.0556 (19)	-0.0200 (16)	0.0018 (14)	-0.0334 (16)
C13	0.044 (2)	0.116 (4)	0.095 (3)	-0.013 (2)	-0.0016 (19)	-0.072 (3)
F1	0.120 (7)	0.087 (7)	0.31 (3)	0.014 (6)	-0.107 (12)	-0.124 (12)
F2	0.106 (6)	0.127 (7)	0.122 (5)	-0.082 (5)	-0.039 (4)	-0.020 (5)
F3	0.200 (10)	0.138 (7)	0.059 (4)	-0.118 (8)	-0.023 (4)	-0.027 (4)
F1'	0.075 (5)	0.149 (12)	0.155 (11)	-0.020 (6)	-0.009 (5)	-0.124 (10)
F2'	0.35 (4)	0.16 (2)	0.100 (7)	-0.21 (3)	-0.044 (17)	-0.007 (11)
F3'	0.074 (5)	0.128 (9)	0.230 (19)	0.043 (7)	-0.106 (8)	-0.119 (12)

Geometric parameters (Å, °)

O—C12	1.205 (4)	N4—H4A	0.8600
Cl1—C1	1.720 (3)	C4—C5	1.368 (4)
Cl2—C5	1.717 (3)	C4—H4B	0.9300
Cl3—C13	1.747 (4)	C5—C6	1.390 (4)
N1—C10	1.353 (4)	C7—F2'	1.192 (11)
N1—N2	1.362 (3)	C7—F1	1.249 (8)
N1—C6	1.420 (4)	C7—F3	1.273 (9)
C1—C2	1.382 (4)	C7—F3'	1.304 (13)
C1—C6	1.387 (4)	C7—F2	1.381 (9)
N2—C8	1.319 (4)	C7—F1'	1.454 (11)
С2—С3	1.378 (5)	C8—C9	1.389 (5)
C2—H2B	0.9300	C8—C11	1.437 (4)
C3—C4	1.383 (5)	C9—C10	1.369 (4)
C3—C7	1.504 (5)	С9—Н9А	0.9300
N3—C11	1.137 (5)	C12—C13	1.506 (5)
N4—C12	1.353 (4)	C13—H13A	0.9700
N4—C10	1.387 (4)	С13—Н13В	0.9700
C10—N1—N2	111.9 (2)	F2'—C7—F1'	103.7 (13)
C10—N1—C6	130.1 (2)	F3'—C7—F1'	91.6 (9)
N2—N1—C6	117.8 (2)	F2'—C7—F3'	114.9 (16)
C2—C1—C6	120.8 (3)	F1—C7—C3	112.7 (5)
C2—C1—Cl1	119.3 (2)	F2—C7—C3	106.0 (6)
C6—C1—Cl1	119.9 (2)	F3—C7—C3	115.0 (5)
C8—N2—N1	103.3 (2)	F1'—C7—C3	107.6 (5)
C3—C2—C1	119.0 (3)	F2'—C7—C3	120.9 (7)
C3—C2—H2B	120.5	F3'—C7—C3	113.0 (7)
U3—U2—H2B	120.5	F3-U/U3	113.0

C1—C2—H2B	120.5		N2—C8—C9		113.8 (3)
C2—C3—C4	121.2 (3)		N2-C8-C11		119.2 (3)
C2—C3—C7	120.2 (3)		C9—C8—C11		127.1 (3)
C4—C3—C7	118.6 (3)		С10—С9—С8		103.8 (3)
C12—N4—C10	122.7 (3)		С10—С9—Н9А		128.1
C12—N4—H4A	118.6		С8—С9—Н9А		128.1
C10—N4—H4A	118.6		N1—C10—C9		107.2 (3)
C5—C4—C3	119.0 (3)		N1-C10-N4		120.4 (3)
C5—C4—H4B	120.5		C9—C10—N4		132.4 (3)
C3—C4—H4B	120.5		N3—C11—C8		178.4 (4)
C4—C5—C6	121.2 (3)		O-C12-N4		123.4 (3)
C4—C5—Cl2	119.2 (2)		O-C12-C13		120.0 (3)
C6—C5—C12	119.6 (2)		N4-C12-C13		116.7 (3)
C1—C6—C5	118.7 (3)		C12—C13—Cl3		115.8 (2)
C1—C6—N1	121.4 (3)		C12—C13—H13A		108.3
C5—C6—N1	119.8 (3)		Cl3—C13—H13A		108.3
F1—C7—F2	102.2 (9)		С12—С13—Н13В		108.3
F1—C7—F3	118.1 (10)		Cl3—C13—H13B		108.3
F3—C7—F2	100.1 (6)		H13A—C13—H13B		107.4
C10—N1—N2—C8	1.6 (3)		C4—C3—C7—F1		39.4 (16)
C6—N1—N2—C8	177.3 (3)		C2—C3—C7—F3		-0.4 (9)
C6—C1—C2—C3	-1.3 (4)		C4—C3—C7—F3		178.8 (8)
Cl1—C1—C2—C3	-179.9 (2)		C2—C3—C7—F3'		18.7 (11)
C1—C2—C3—C4	-1.0 (5)		C4—C3—C7—F3'		-162.0 (10)
C1—C2—C3—C7	178.2 (3)		C2—C3—C7—F2		109.2 (6)
C2—C3—C4—C5	0.9 (5)		C4—C3—C7—F2		-71.6 (6)
C7—C3—C4—C5	-178.3 (3)		C2—C3—C7—F1'		-80.8 (11)
C3—C4—C5—C6	1.4 (5)		C4—C3—C7—F1'		98.4 (11)
C3—C4—C5—Cl2	-177.6 (2)		N1—N2—C8—C9		-0.6 (4)
C2-C1-C6-C5	3.5 (4)		N1—N2—C8—C11		-179.8 (3)
Cl1—C1—C6—C5	-177.8 (2)		N2-C8-C9-C10		-0.6 (4)
C2-C1-C6-N1	-173.9 (2)		C11—C8—C9—C10		178.6 (3)
Cl1—C1—C6—N1	4.8 (4)		N2-N1-C10-C9		-2.0 (3)
C4—C5—C6—C1	-3.6 (4)		C6—N1—C10—C9		-177.0 (3)
Cl2—C5—C6—C1	175.4 (2)		N2-N1-C10-N4		179.1 (3)
C4—C5—C6—N1	173.8 (3)		C6—N1—C10—N4		4.0 (5)
Cl2—C5—C6—N1	-7.1 (4)		C8-C9-C10-N1		1.5 (4)
C10—N1—C6—C1	-76.2 (4)		C8—C9—C10—N4		-179.8 (3)
N2—N1—C6—C1	109.0 (3)		C12—N4—C10—N1		168.1 (3)
C10—N1—C6—C5	106.4 (4)		C12—N4—C10—C9		-10.5 (6)
N2—N1—C6—C5	-68.3 (3)		C10—N4—C12—O		1.4 (6)
C2—C3—C7—F2'	161 (3)		C10—N4—C12—C13		-179.0 (3)
C4—C3—C7—F2'	-20 (3)		O-C12-C13-Cl3		-143.6 (4)
C2—C3—C7—F1	-139.8 (16)		N4—C12—C13—Cl3		36.7 (5)
Hydrogen-bond geometry (Å, °)					
D—H…A		D—H	H···A	$D \cdots A$	D—H··· A
N4—H4A…N3 ⁱ		0.86	2.49	3.280 (5)	153.

C4—H4B···O ⁱⁱ	0.93	2.53	3.349 (5)	148.
Symmetry codes: (i) $x+1$, y , z ; (ii) x , $y+1$, z .				

Fig. 1

Fig. 2